39 research outputs found

    Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing

    Get PDF
    Clear cell renal carcinomas (ccRCCs) can display intratumor heterogeneity (ITH). We applied multiregion exome sequencing (M-seq) to resolve the genetic architecture and evolutionary histories of ten ccRCCs. Ultra-deep sequencing identified ITH in all cases. We found that 73–75% of identified ccRCC driver aberrations were subclonal, confounding estimates of driver mutation prevalence. ITH increased with the number of biopsies analyzed, without evidence of saturation in most tumors. Chromosome 3p loss and VHL aberrations were the only ubiquitous events. The proportion of C>T transitions at CpG sites increased during tumor progression. M-seq permits the temporal resolution of ccRCC evolution and refines mutational signatures occurring during tumor development

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Roles for retrotransposon insertions in human disease

    Get PDF

    Edible Bird’s nest extract as a chondro-protective agent for human chondrocytes isolated from osteoarthritic knee: in vitro study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoarthritis (OA) is a degenerative joint disease that results in the destruction of cartilage. Edible Bird’s Nest (EBN) extract contains important components, which can reduce the progression of osteoarthritis and helps in the regeneration of the cartilage. The present study aimed to investigate the effect of EBN extract on the catabolic and anabolic activities of the human articular chondrocytes (HACs) isolated from the knee joint of patients with OA.</p> <p>Methods</p> <p>A single batch of EBN extract was prepared with hot-water extraction and coded as HMG. HACs were isolated from the knee joint cartilage removed during surgery. The optimum concentration of HMG for HAC cultures was determined using MTT assay. The effect of HMG on the catabolic and anabolic genes’ expression in HACs was measured by real-time PCR. The total amount of prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) production was determined by ELISA method, and the total sulphated glycosaminoglycan (GAGs) production was quantified by 1,9-dimethylmethylene blue (DMMB) assay.</p> <p>Results</p> <p>MTT assay showed 0.50% - 1.00% HMG supplementation promoted HACs proliferation. HMG supplementation was able to reduce the catabolic genes’ expression in cultured HACs such as matrix metalloproteinases (MMP1 & MMP3), Interleukin 1, 6 and 8 (IL-1, IL-6 & IL-8), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) production was significantly reduced in HAC cultures supplemented with HMG. With regard to anabolic activity assessment, type II collagen, Aggrecan and SOX-9 gene expression as well as sGAG production was increased in the HMG supplemented groups.</p> <p>Conclusion</p> <p>Edible Bird’s Nest extract coded as HMG demonstrated chondro-protection ability on human articular chondrocytes in vitro. It reduced catabolic activities and increased cartilage extracellular matrix synthesis. It is concluded that HMG is a potential agent in the treatment of osteoarthritis.</p
    corecore